Design with Hardware

Description Languages (HDL)

Amin Mehranzadeh, Ph.D.

CE Department of
Islamic Azad University of Dezful

mehranzadeh®iaud.ac.ir

Mehran.students@gmail.com

Sequential Code

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

mailto:mehranzadeh@iaud.ac.ir
mailto:Mehran.students@gmail.com

Sequential Code:

* As mentioned before, VHDL code is inherently
concurrent. PROCESSES, FUNCTIONS, and
PROCEDURES are the only sections of code that
are executed sequentially. However, as a whole,
any of these blocks is still concurrent with any
other statements placed outside it.

» Sequential code is also called behavioral code.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

Sequential Code:

» The statements discussed in this section are all
sequential, that is, allowed only inside
PROCESSES, FUNCTIONS, or PROCEDURES. They
are: IF, WAIT, CASE, and LOOP.

» VARIABLES are also restricted to be used in
sequential code only (that is, inside a PROCESS,
FUNCTION, or PROCEDURE). Thus, contrary to a
SIGNAL, a VARIABLE can never be global, so its
value can not be passed out directly.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

PROCESS:

» A PROCESS is a sequential section of VHDL code.

» It is characterized by the presence of IF, WAIT,
CASE, or LOOP, and by a sensitivity list (except
when WAIT is used).

* A PROCESS must be installed in the main code,
and is executed every time a signal in the
sensitivity list changes (or the condition related
to WAIT is fulfilled).

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

PROCESS:

* Its syntax is shown below:

[label:] PROCESS (sensitivity list)
[VARIABLE name type [range] [:= initial value;]]
BEGIN -
(sequential code)
END PROCESS [label];

Notes:

» VARIABLES are optional. If used, they must be declared in the declarative part
of the PROCESS (before the word BEGIN, as indicated in the syntax above).

» The initial value is not synthesizable, being only taken into consideration in
simulations.

* The use of a label is also optional. Its purpose is to improve code readability.
The label can be any word, except VHDL reserved words.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

Example 1: DFF with Asynchronous Reset #1

» A D-type flip-flop (DFF, figure 6.1) is the most basic
building block in sequential logic circuits. In it, the
output must copy the input at either the positive or
negative transition of the clock signal (rising or
falling edge).

d— —q
DFF
clk —
Ist
Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

Example 1: DFF with Asynchronous Reset #1

2 LIBRARY ieee;

3 USE ieee.std logic_ll64.all;
4 @ ———————— -
5 ENTITY dff IS
6 PORT (d, clk, rst: IN STD LOGIC;
7 g: OUT STD_LOGIC);
8 END dff;
= T
10 ARCHITECTURE behavior OF dff IS
11 BEGIN
12 PROCESS (clk, rst)
13 BEGIN
14 IF (rst='1') THEN
15 g <= '0';
16 ELSIF (clk'EVENT AND clk='1l') THEN
17 q <= d;
18 END IF;
19 END PROCESS;
Amin Mehranzadeh, Ph.D. 22 END behavior;

5/17/2016

Signals and Variables:

» VHDL has two ways of passing non-static values
around: by means of a SIGNAL or by means of a
VARIABLE.

* A SIGNAL can be declared in a PACKAGE, ENTITY
or ARCHITECTURE (in its declarative part), while
a VARIABLE can only be declared inside a piece
of sequential code (in a PROCESS, for example).

» Therefore, while the value of the former can be
global, the latter is always local.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

Signals and Variables:

» The value of a VARIABLE can never be passed out
of the PROCESS directly; if necessary, then it
must be assigned to a SIGNAL. On the other
hand, the update of a VARIABLE is immediate,
that is, we can promptly count on its new value
in the next line of code.

» That is not the case with a SIGNAL (when used in
a PROCESS), for its new value is generally only
guaranteed to be available after the conclusion
of the present run of the PROCESS.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

IF:

* The syntax of IF is shown below:

IF conditions THEN assignments;
ELSIF conditions THEN assignments;

ELSE assignments;
END IF;

Example:

IF (x<y) THEN temp:="11111111";
ELSIF (x=y AND w='0') THEN temp:="11110000";
ELSE temp:=(OTHERS =>'0');

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

Example 2: One-digit Counter #1

* The code below implements a progressive
1-digit decimal counter (0 -> 9 -> 0).

clk — = digit (3:0)

AmMmHZa0nN

TDD,IDns 2DD.IDns 3DD,‘Dns AOD.IDns

= clk 0

v ! /
A A A A

{ {
D

= digit HOD 6

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all;
e L T e e e LT T
5 ENTITY counter IS
6 PORT (clk : IN STD_LOGIC;
7 digit : OUT INTEGER RANGE 0 TO 9);
8 END counter;
. e ————
10 ARCHITECTURE counter OF counter IS
11 BEGIN
12 count: PROCESS(clk)
13 VARIABLE temp : INTEGER RANGE 0 TO 10;
14 BEGIN
15 IF (clk'EVENT AND clk='l') THEN
16 temp := temp + 1;
17 IF (temp=10) THEN temp := 0;
18 END IF;
19 END IF;
20 digit <= temp;
21 END PROCESS count;
Amin Mehranzadeh, Ph.D. 22 END counter;
P T

Example 3 Shift Register

» Figure below shows a 4-bit shift register. The output
bit (q) must be four positive clock edges behind the
input bit (d). It also contains an asynchronous reset,
which must force all flip-flop outputs to ‘O’ when

asserted.

d

clk J_

rst

Amin Mehranzadeh, Ph.D.

— | — —q

DFF DFF DFF DFF

CE Department of Islamic Azad University of Dezful

5/17/2016

Example 3: shift Register

Amin Mehranzadeh, Ph.D.

LIBRARY ieee;
USE ieee.std_logic_ll64.all;
ENTITY shiftreg IS
GENERIC (n: INTEGER := 4); -- # of stages
PORT (d, clk, rst: IN STD_LOGIC;
q: OUT STD_LOGIC);
END shiftreg;
ARCHITECTURE behavior OF shiftreg IS
SIGNAL internal: STD_LOGIC_VECTOR (n-1 DOWNTO 0);
BEGIN
PROCESS (clk, rst)
BEGIN
IF (rst='1') THEN
internal <= (OTHERS => '0');
ELSIF (clk'EVENT AND clk='l') THEN
internal <= d & internal(internal'LEFT DOWNTO 1);
END IF;
END PROCESS;
g <= internal(0);
END behavior;

WAIT:

» The operation of WAIT is sometimes similar to that of
IF. Moreover, contrary to when IF, CASE, or LOOP are
used, the PROCESS cannot have a sensitivity list when
WAIT is employed. Its syntax (there are three forms of
WAIT) is shown below.

WAIT UNTIL signal_condition;

WAIT ON signall [, signal2, ...];

WAIT FOR time;

Amin Mehranzadeh, Ph.D.

CE Department of Islamic Azad University of Dezful

5/17/2016

5/17/2016

WAIT UNTIL:

» The WAIT UNTIL statement accepts only one signal, thus
being more appropriate for synchronous code than
asynchronous. Since the PROCESS has no sensitivity list in
this case, WAIT UNTIL must be the first statement in the
PROCESS. The PROCESS will be executed every time the

condition is met. Example: 8-bit register with synchronous reset.
PROCESS -- no sensitivity list
BEGIN

WAIT UNTIL (clk'EVENT AND clk='1');
IF (rst='1') THEN
output <= "00000000";
ELSIF (clk'EVENT AND clk='1l') THEN
output <= input;
END IF;
END PROCESS;

Amin Mehranzadeh, Ph.D.

WAIT ON:

* WAIT ON, on the other hand, accepts multiple signals.

» The PROCESS is put on hold until any of the signals listed
changes.

* In the example below, the PROCESS will continue
execution whenever a change in rst or clk occurs.

PROCESS
BEGIN
WAIT ON clk, rst;
IF (rst='l') THEN
output <= "00000000";
ELSIF (clk'EVENT AND clk='1l') THEN
output <= input;
END IF;

END PROCESS;
Amin Mehranzadeh, Ph.D.

WAIT FOR:

» Finally, WAIT FOR is intended for simulation only
(waveform generation for testbenches).
» Example: WAIT FOR 5ns;

Example 4: DFF with Asynchronous Reset #2

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

Example 4: DFF with Asynchronous Reset #2

2 LIBRARY ieee;

3 USE ieee.std logic_1164.all;
d e e
* The code below . Lirioy ars 1s
implements the same s PORT (d, clk, rst: IN STD_LOGIC;
DFF of example1. 7 g: OUT STD_LOGIC);
8 END dff;

 However, here WAIT , '
ON is used instead of 10 ARCHITECTURE dff OF dff IS

L=}

IF Only. 11 BEGIN
12 PROCESS
13 BEGIN
14 WAIT ON rst, clk;
15 IF (rst='l') THEN
16 g <= '0";
17 ELSIF (Clk'EVENT AND Clk:'l') THEN
18 g <= d;
19 END IF;
20 END PROCESS;
21 END dff;

Amin Mehranzadeh, Ph.D.

5/17/2016

10

Example 5: One-digit Counter #2

2 LIBRARY ieee;

3 USE ieee.std logic_l164.all;
* The code below 4 ——=——=—mmmmmmmmmmmmmmm e
implements the same 5 ENTITY counter IS
. 1-d t 6 PORT (clk + IN STD_LOGIC;
progresswe 181 7 digit : OUT INTEGER RANGE 0 TO 9);
decimal counter of 3 Ewp counter;

{X=}

example2.
° However WAlT UNT"_ 10 ARCHITECTURE counter OF counter IS
)

d . d f 11 BEGIN
was use instea 0 12 PROCESS -- no sensitivity list
IF only. 13 VARIABLE temp : INTEGER RANGE 0 TO 10;
14 BEGIN
15 WAIT UNTIL (clk'EVENT AND clk='1');
16 temp := temp + 1;
17 IF (temp=10) THEN temp := 0;
18 END IF;
19 digit <= temp;
20 END PROCESS;
Amin Mehranzadeh, Ph.D. 21 END counter;
22 mmmmmm e — e —————————

CASE:

« CASE is another statement intended exclusively for
sequential code (along with IF, LOOP, and WAIT). Its
syntax is shown below.

CASE identifier IS
WHEN value => assignments;
WHEN value => assignments;

END CASE;

Example:
CASE control IS
WHEN "00" => x<=a; y<=b;
WHEN "01" => x<=b; y<=c;
WHEN OTHERS => x<="0000"; y<="ZZZZ";
Amin Mehranzadeh, Ph.D. END CASE;

5/17/2016

11

CASE:

» The CASE statement (sequential) is very similar to WHEN
(combinational).

* Here too all permutations must be tested, so the
keyword OTHERS is often helpful.

» Another important keyword is NULL (the counterpart of
UNAFFECTED), which should be used when no action is to
take place. For example, WHEN OTHERS =>NULL;.

» However, CASE allows multiple assignments for each test
condition, while WHEN allows only one.

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

CASE:

* Like in the case of WHEN, here too ‘“WHEN value” can
take up three forms:

WHEN value -- single value

WHEN wvaluel to value2 -- range, for enumerated data types
-- only

WHEN valuel | value2 |... -- valuel or value2 or ...

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

12

2 LIBRARY ieee; -- Unnecessary declaration,

3 -- because

4 USE ieee.std logic 1164.all; -- BIT was used instead of
» The code below s - -~ STD_LOGIC

=)}

implements the
DFF Of 7 ENTITY dff IS
same l 1 8 PORT (d, clk, rst: IN BIT;
examptel. 9 g: OUT BIT);
* However, here 10 = dff:
CASE was used |, [-ooooToTTmoomomomotoomommoooes

12 ARCHITECTURE dff3 OF dff IS

instead of |IF 13 Beemn

only. 14 PROCESS (clk, rst)
15 BEGIN
16 CASE rst IS
17 WHEN '1' => g<='0"';
18 WHEN '0' =>
19 IF (clk'EVENT AND clk='1') THEN
20 g <= d;
21 END IF;
22 WHEN OTHERS => NULL; -- Unnecessary, rst is of type
23 -- BIT
24 END CASE;
25 END PROCESS;
Amin Mehranzadeh, Ph.D. 26 END dff3;
27 mmm

Example 7: Two-digit Counter with SSD Output

 The code below implements a progressive 2-digit
decimal counter (0 -> 99 -> 0), with external
asynchronous reset plus binary-coded decimal (BCD) to
seven-segment display (SSD) conversion. Notice that
we have chosen the following connection between the

* circuit and the SSD: xabcdefg (that is, the MSB feeds
the decimal point, while the LSB feeds segment g).

SSD
¢ a
0 —
; j JIE
clk — ¥ —
digit2 I g I
E € e .
R — 0
digitl d X
Amin Mehranzadeh, Ph.D. - —
reset Input: “xabcdefg

5/17/2016

13

Amin Mehranzadeh, Ph.D.

2
3

'S

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY counter IS
PORT (clk, reset IN STD_LOGIC;
digitl, digit2 : OUT STD_LOGIC_VECTOR (6 DOWNTO
END counter;
ARCHITECTURE counter OF counter IS
BEGIN
PROCESS (clk, reset)
VARIABLE templ: INTEGER RANGE 0 TO 10;
VARIABLE temp2: INTEGER RANGE 0 TO 10;

BEGIN
—-—-- counter: —————-——————————
IF (reset='l') THEN
templ := 0;
temp2 := 0;

ELSIF (clk'EVENT AND clk='1l') THEN
templ := templ + 1;
IF (templ=10) THEN
templ := 0;
temp2 := temp2 + 1;
IF (temp2=10) THEN
temp2 := 0;

0));

Example 7: Two-digit Counter with SSD Output

Amin Mehranzadeh, Ph.D.

27 END IF;

28 END IF:

29 END IF;

30 —--- BCD to SSD conversion: --—--—---

31 CASE templ IS

32 WHEN 0 => digitl <= "1111110"; --7E
33 WHEN 1 => digitl <= "0110000"; --30
34 WHEM 2 => digitl <= "1101101"; --6D
a5 WHEM 3 => digitl <= "1111001"; --79
36 WHEN 4 => digitl "0110011"; =-=33
37 WHEN 5 => digitl <= "1011011"; --5B
38 WHEN 6 => digitl <= "1011111"; --5F
9 WHEM 7 => digitl <= "1110000"; --70
40 WHEN 8 =» digitl <= "1111111"; --7F
41 WHEM 9 => digitl <= "1111011"; --78
42 WHEN OTHERS => NULL;

43 END CASE;

44 CASE temp2 IS

45 WHEN 0 => digit2 <= "1111110"; ~-7E
46 WHEN 1 => digit2 <= "0110000"; --30
47 WHEM 2 => digit2 "1101101"; --6D
48 WHEN 3 => digit2 "1111001"; -=79
49 WHEN 4 => digit2 —-33
50 WHEN 5 => digit2 --5B
51 WHEN 6 => digit2 __5F
52 WHEN 7 => digit2 <= "1110000"; -=70
53 WHEN 8 => digit2 <= "1111111"; --7F
54 WHEN 9 => digit2 <= "1111011"; --7B
55 WHEN OTHERS => NULL;

56 END CASE;

57 END PROCESS;

58 END counter;

59 == o —

5/17/2016

14

LOOP:

* As the name says, LOOP is useful when a piece of code
must be instantiated several times. There are several
ways of using LOOP, as shown in the syntaxes below.

FOR [LOOP: The loop is repeated a fixed number of times.

[label:] FOR identifier IN range LOOF
(sequential statements)
END LOOP [label];

Example of FOR [LOOP:
Note:
One important remark regarding FOR / LOOP
(similar to that made for GENERATE) is that
both limits of the range must be static.

FOR i IN 0 TO 5 LOOP
x(i) <= enable AND w(i+2);
y(0, 1) <=w(i);

END LOOP;

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

LOOP:

WHILE [LOOP: The loop is repeated until a condition no longer holds.

[label:] WHILE condition LOOP
(sequential statements)
END LOOP [label];

Example of WHILE /| LOOP: In this example, LOOP will keep repeating while
i< 10.

WHILE (i < 10) LOOP
WAIT UNTIL clk'EVENT AND clk='1";
(other statements)

END LOOP;

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

15

LOOP:

EXIT: Used for ending the loop.

[label:] EXIT [label] [WHEN condition];

Example with EXIT: In this case, the loop will end as

soon as a value different from ‘0’ is found in the data
vector.
FOR i IN data'RANGE LOOP
CASE data(i) IS
WHEN '0' => count:=count+1l;
WHEN OTHERS => EXIT;
END CASE;
END LOOP;

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

LOOP:

NEXT: Used for skipping loop steps.

[label:] NEXT [loop label] [WHEN condition];

Example with NEXT: In the example below, NEXT
causes LOOP to skip one iteration when i = skip.

FOR i IN 0 TO 15 LOOP
NEXT WHEN i=skip; -— jumps to next iteration
(ens)
END LOOP;

Amin Mehranzadeh, Ph.D. CE Department of Islamic Azad University of Dezful

5/17/2016

16

Example 8: Carry Ripple Adder

Figure below shows an 8-bit unsigned carry ripple adder.

Top level:

a
> > s

b & 4

cin —| - cout

One level below top:

apg bo a; by as by
y v v v v 4
Co— t » T > » t G
Cy Ca C7
(cin (cout)
v v v
80 81 S7

Each section of the latter diagram is a full-adder unit Thus its

outputs can be co

mputed by means of:

s; = a; XOR b; XOR ¢

¢j+1 = (3 AND b)) OR (a; AND ¢) OR (bj AND ¢)

Amin Mehranzadeh, Ph.D.

CE Department of Islamic Azad University of Dezful

Example 8:

Amin Mehranzadeh, Ph.D.

Carry Ripple Adder

1 ————- Solution 1l: Generic, with VECTORS —-——————-
2 LIBRARY ieee;

3 USE ieee.std_logic_l1l64.all;

B
5 ENTITY adder IS

6 GENERIC (length : INTEGER := 8);

7 PORT (a, b: IN STD LOGIC_VECTOR (length-1 DOWNTO 0);
8 cin: IN STD_LOGIC;

9 s: OUT STD_LOGIC_VECTOR (length-1 DOWNTO 0);
10 cout: OUT STD_LOGIC);

11 END adder;

12 mmm e e e

13 ARCHITECTURE adder OF adder IS

14 BEGIN

15 PROCESS (a, b, cin)

16 VARIABLE carry : STD _LOGIC VECTOR (length DOWNTO 0);
17 BEGIN

18 carry(0) := cin;

19 FOR i IN 0 TO length-1 LOOP

20 s(i) <= a(i) XOR b(i) XOR carry(i);

21 carry(i+l) := (a(i) AND b(i)) OR (a(i) AND

22 carry(i)) OR (b(i) AND carry(i));
23 END LOOP;

24 cout <= carry(length);

25 END PROCESS;

26 END adder;

27 e e —————

5/17/2016

17

Example 8: Carry Ripple Adder

-—-- Solution 2: non-generic, with INTEGERS ----—

LIBRARY ieee;
3 USE ieee.std logic_ll64.all;

4
5 ENTITY adder IS

6 PORT (a, b: IN INTEGER RANGE 0 TO 255;

7 c0: IN STD_LOGIC;

8 s: OUT INTEGER RANGE 0 TO 255;

9 c8: OUT STD LOGIC);

10 END adder;

1] ——emememer e e e e e e e e e ———
12 ARCHITECTURE adder OF adder IS

13 BEGIN

14 PROCESS (a, b, c0)

15 VARIABLE temp : INTEGER RANGE 0 TO 511;
16 BEGIN

17 IF (c0='1') THEN temp:=1;

18 ELSE temp:=0;

19 END IF;

20 temp := a + b + temp;

21 IF (temp > 255) THEN

22 c8 <= 'l1';

23 temp := temp---256;

24 ELSE c8 <= '0';

25 END IF;

26 s <= temp;

27 END PROCESS;

Amin Mehranzadeh, Ph.D.

28 END adder;
29 —————-

Example 9:
(Simple Barrel Shifter)

the circuit must shift the
input vector (of size 8) either
0 or 1 position to the left.
When actually shifted (shift =
1), the LSB bit must be filled
with ‘0’ (shown in the botton
left corner of the diagram). If
shift = 0, then outp = inp; if
shift = 1, then outp(0) = ‘0’
and outp(i) = inp(i - 1), for
1<i<7.

Amin Mehranzadeh, Ph.D.

inp(7)

outp(7)
inp(6) {

outp(6)
inp(5) {

outp(s)
inp(4) {

outp(4)
inp(3) {

outp(3)
inp(2) {

outp(2)
inp(1) {

outp(l)
inp(0) {

outp(0)

5/17/2016

18

Example 9:
(Simple Barrel Shifter) ,

LIBRARY ieee;
USE ieee.std logic_ll64.all;

5 ENTITY barrel IS
6 GENERIC (n: INTEGER := 8);
7 PORT (inp: IN STD_LOGIC VECTOR (n-1 DOWNTO 0);
8 shift: IN INTEGER RANGE 0 TO 1;
9 outp: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0));
10 END barrel;
11 m— e
12 ARCHITECTURE RTL OF barrel IS
13 BEGIN
14 PROCESS (inp, shift)
15 BEGIN
16 IF (shift=0) THEN
17 outp <= inp;
18 ELSE
19 outp(0) <= '0';
20 FOR i IN 1 TO inp'HIGH LOOP
21 outp(i) <= inp(i-1);
22 END LOOP;
23 END IF;
24 END PROCESS;
25 END RTL;
Amin Mehranzadeh, Ph.D. 26 e
]
2 LIBRARY ieee;
Example 10: 3 USE ieee.std_logic_1164.all;
. 4
(Lead]ng ZerOS) 5 ENTITY LeadingZeros IS
6 PORT (data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
The design belOW 7 . zeros: OUT INTEGER RANGE 0 TO 8);
8 END LeadingZeros;
counts the number of ____________ ____________

leading zeros in a
binary vector, starting
from the left end. In
this example, the loop
will end as soon as a
‘1’ is found in the data
vector. Therefore, it is
appropriate for
counting the number
of zeros that precedes
the first one.

Amin Mehranzadeh, Ph.D.

10 ARCHITECTURE behavior OF LeadingZeros IS
11 BEGIN

12 PROCESS (data)

13 VARIABLE count: INTEGER RANGE 0 TO 8;
14 BEGIN

15 count := 0;

16 FOR i IN data'RANGE LOOP

17 CASE data(i) IS

18 WHEN '0' => count := count + 1;
19 WHEN OTHERS => EXIT;

20 END CASE;

21 END LOOP;

22 zeros <= count;

23 END PROCESS;

24 END behavior;

25 —mm

5/17/2016

19

